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Abstract

The influence of toroidal plasma rotation on the existence of reversed shear Alfvén

eigenmodes (RSAEs) near their minimum frequency is investigated analytically. An existence

condition is derived showing that a radially decreasing kinetic energy density is unfavourable

for the existence of RSAEs. The Coriolis effect is typically unfavourable for modes moving

slower than the plasma or moving in the opposite direction. The generality of the analysis

allows for the description of downwards sweeping RSAEs and also rotation-induced modes in

regular shear plasmas.

1. Introduction

To describe Alfvén waves associated with the bending of
magnetic field lines in tokamak plasmas, the theory of
magnetohydrodynamics (MHD) has been very successful. The
continuous MHD spectrum contains various gaps and extrema
introduced by toroidal effects, plasma shape and rotation.
When specific criteria are met, global modes can cluster
at these extrema. An example of such cluster modes are
reversed shear Alfvén eigenmodes (RSAEs). They are often
observed in magnetic spectrograms when the safety factor
profile has an extremum. These modes have been used as an
accurate diagnostic for the safety factor [1–3]. In addition
to their usefulness in MHD spectroscopy, RSAEs can also
have a negative effect on the confinement of energetic ions [4].
The expulsion of fast particles can lead to decreased plasma
performance and even damage to plasma facing components.

RSAEs were first observed in JT-60U [5] and later
thoroughly investigated at JET [2, 6], where they were called
Alfvén Cascades (ACs). They have also been observed in
various other tokamaks such as Alcator C-mod [3], TFTR [7],
ASDEX Upgrade [8], DIII-D [9] and spherical tokamaks such
as NSTX [10] and MAST [11]. Recently, they have also been
found in the LHD stellarator [12]. RSAEs are observed to
terminate at the geodesic acoustic mode (GAM) frequency,

primarily caused by geodesic curvature [13–15]. When this
minimum frequency exceeds the maximum (toroidal Alfvén
eigenmode) frequency, RSAEs cannot exist [10]. Toroidal
rotation can significantly increase the GAM frequency, an
effect that might be observable in spectrograms. In addition
to such quantitative changes, rotation can also modify the
structure of the spectrum. At very low frequencies, new
flow-induced gaps and modes appear in the continuous
spectrum [16, 17].

Whether cluster modes exist or not, depends both on
whether certain cluster criteria are met and whether a free
energy source is available to destabilize the modes. A
radially decreasing density of large orbit energetic particles
can play a role in satisfying both these conditions. They
were shown to favour the existence of modes with a ratio of
poloidal and toroidal mode numbers m/n slightly above the
minimum value q0 of the safety factor q [6]. Typically in
experiments q0 is decreasing due to current diffusion so that
thesemodes chirp upwards in frequency. Second order toroidal
effects were found to further favour upsweeping cascades [18].
Simulations showed that plasma pressure gradients provide
an additional drive [19]. Terms quadratic in the pressure
gradient were found to play a negative role for the existence of
RSAEs [15]. Inclusion of the averaged normal curvature from
the interchange term resulted in a mode existence criterion
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that, close to a rational surface, is similar to Mercier’s stability

criterion [20]. This criterion contains a term linear in the

pressure gradient that is favourable for both stability andRSAE

existence when q > 1.

Here we extend these useful existing cluster criteria to

take into account the effect of toroidal rotation. The results

are limited to modes near a rational surface, where the mode

frequency is close to the GAM frequency. New terms due to

rotation appear, the physical origin of which was discussed

in [21].

2. Preliminaries

2.1. Assumptions

Weassume a tokamakplasmawith a circular cross-sectionwith

minor radius a, centred at a major radius R given by R0. The

nestedmagnetic surfaces, labelled by the poloidal flux function

ψ , are assumed to be of constant equilibrium temperature

T (ψ) = p/ρ with p and ρ the plasma pressure and density.

Within the magnetic surfaces, rotating with angular frequency

Ä(ψ), the force balance ∂p/∂R|ψ = ρRÄ2 is then satisfied

by [22, 23]

p(R, ψ)

ps(ψ)
=

ρ(R, ψ)

ρs(ψ)
= exp

(

M
2R2

R20

)

, (1)

where M ≡ R0Ä/
√
2T differs from a Mach number

by a factor
√

γ /2. The functions ps(ψ) and ρs(ψ)

represent the static pressure and density and can be freely

specified.

We consider an infinitesimal plasma perturbation

ξ =
∑

m′=m,m±1
ǫ|m′−m|ξm′(r)ei(m

′θ−nφ−ωt), (2)

where higher order terms are only required at intermediary

stages of the calculations [24]. The ordering of the sidebands

with ǫ|m′−m| reflects the weak toroidal coupling to a dominant
main perturbation ξm. This ordering excludes the description

of e.g. TAEs, which requires two harmonics to be dominant.

A flux coordinate system (r, θ, φ) is used in which, within

magnetic surfaces labelled by r , the field lines have a constant

pitch dφ/dθ = q(r). In [24], a large aspect ratio expansion

of the Frieman–Rotenberg equations [25] was performed up to

fourth order in ǫ ≡ a/R0 ≪ 1, using the ordering

ω ∼ Ä, M ∼ 1, β ∼ ǫ2 and m/q − n ∼ ǫ. (3)

Here β(r) ≡ 2µ0ps/B
2
0 , where the constant B0 refers to the

magnetic field at R = R0. With ωA(r) ≡ B0/
√

µ0ρsR0, (3)

gives ω ∼ ǫωA, consistent with excluding the description of

TAEs. The resulting mode equation will be discussed next.

2.2. Mode equation

The equation of motion for the radial component ξ ≡ ξ r
m

derived in [24] can be written as

(f ξ ′)′ + gξ = h, (4)

where

f = r3A1, (5a)

g = r2A′
2 − r(m2 − 1)A1. (5b)

The function h represents the coupling to the sideband

harmonics ξ r
m±1 [24], a prime denotes d/dr , and

A1 = Ã1 +

(

m

q
− n

)2

, (6a)

A2 = Ã1 − n2(β(1− q2) + q2αk + q2βk), (6b)

where

Ã1 =
(ω2D − ω̃2−)(ω2D − ω̃2+)

ω2A(ω20 − ω2D)
, (7a)

αk =
ω20

ω2A

4ÄωD/n

ω2D − ω20

(

1 +
M

2

γ

)

, (7b)

βk = βM
2
(

1 +M
2
)

. (7c)

The Doppler-shifted frequency ωD(r) ≡ ω + nÄ and

ω̃2±(r) =
ω20

2
(ã1 ±

√

ã21 − ã2) and ω20(r) =
γ T

q2R20
, (8)

where

ã1 = 1 + 2q2
(

1 +
1

γ

(

4M2 +M
4
)

)

, (9a)

ã2 =
8q2(γ − 1)

γ 2
M

4. (9b)

In the derivation of (4) in [24] the ordering m/q − n ∼ ǫ

was invoked to neglect radial variation in the safety factor.

Therefore in all of the above expressions, except (m/q − n)2,

q refers to its value m/n at the rational surface. This actually

requires an additional assumption of low magnetic shear. This

is appropriate for the modes near a point of shear reversal as

considered here.

2.3. Continuous spectrum

The frequencies of (8) satisfy ω̃2− 6 ω20 6 ω̃2+. The continuous

spectrum is given by those frequencies for which A1 = 0 so

that (4) is singular. These continuum frequencies are given by

ω2D = ω2±, where

ω2± =
ω20

2
(a1 ±

√

a21 − a2). (10)

Here

a1 = ã1 +
ω2A

ω20

(

m

q
− n

)2

, (11a)

a2 = ã2 + 4
ω2A

ω20

(

m

q
− n

)2

, (11b)

so that

A1 =
(ω2D − ω2−)(ω2D − ω2+)

ω2A
(

ω20 − ω2D
) . (12)

The toroidal flow-induced continuum gap for −ω̃− < ωD <

ω̃− is caused by the centrifugal convective effect, where ω̃− is
similar to a buoyancy or Brunt–Väisälä frequency [16, 23].
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The frequency ω̃+ is known as the GAM frequency or
beta-induced Alfvén eigenmode (BAE) frequency, and marks
the minimum frequency of RSAEs. Neglecting the convective
effect by assuming ã2 ≪ ã21 , we obtain ω̃+ ≈

√
ã1ω0.

The coefficient ã1 represents the toroidal inertial enhancement
factor for incompressible poloidal (Pfirsch–Schlüter) motion
within a magnetic surface.

3. Analysis

3.1. Oscillation properties

Sturm’s fundamental oscillation theoremwith themodification
due to Picone [26] states that in a given interval the
homogeneous solution ξ2 of (4) has the same number of nodes
or more than ξ1 when

f1 6 f2 < 0 and g1 > g2. (13)

Since RSAEs have frequencies ω2D > ω2+, from (12) we
find that f = r3A1 6 0. When α′

k can be neglected, for
example for high m, f and g of (5b) satisfy conditions (13)
when ω2D2 < ω2D1. Therefore, the number of nodes of these
solutions increases with decreasing ω2D. This is in agreement
with simulations and observations of higher harmonics of
RSAEs [27, 28].

More generally, when α′
k can be neglected, the theorem

implies thatω2D increases with the number of nodes (Sturmian)
when A1 > 0 and decreases when A1 < 0 (anti-Sturmian).
This agrees with the finding of Sturmian sequences of modes
in the frequency ranges ω2D 6 ω2− and ω20 6 ω2D 6 ω2+ in [21]
and [17], respectively. Note that we used here a mathematical
argument since no analogue exists for rotating toroidal plasmas
to the physics-basedGoedbloed–Sakanaka oscillation theorem
for static cylindrical plasmas [29].

3.2. Time variation

For high poloidal mode numbers m, the time variation of q in
the field line bending terms (m/q − n)2 dominates the time
variation of ω+ so that from (10)–(11b)

dω+

dt
=

ω2A

ω+

ω2+ − ω20

ω2+ − ω2−

(

m

q
− n

)

m
dq−1

dt
. (14)

When q decreases and drops below m/n, there is an
initially slow but accelerating increase in ω+, explaining the
hockey-stick-shaped spectral lines of RSAEs observed in
spectrograms [3, 15, 28, 30]. Measured slopes dω+/dt can be
used to discriminate between different poloidal mode numbers
m and obtain the time variation of the q profile.

At the low-frequency tip of these spectral lines, when
q = m/n so that ω+ = ω̃+, we have

dω+

dt
=

ω+

ω0

dω0

dt
+

ω20

ω2+ − ω2−

(

ω+

2

dã1

dt
−

ω20

8ω+

dã2

dt

)

. (15)

When ã2 ≪ ã21 this approximately reduces to d
√

ã1ω0/dt . In
spectrograms the continuum frequency ω+ itself is generally
not visible. The global RSAEs with approximately the same
frequency, however, can be observed. The goal of the
following analysis will be to establish under which conditions
RSAEs can cluster above the ω+ continuum.

3.3. Cluster point analysis

The nature of the differential equation (4) changes when at a

radial position where x ≡ r − rc = 0 the ‘Mercier index’ D

satisfies [31, 32]

D ≡ lim
x→0

x2
g

f
>
1

4
. (16)

In this case the local homogeneous solutions xν± , with the

complex ‘Frobenius indices’ ν± = − 1
2

±
√
1− 4D, rapidly

oscillate and diverge near x = 0. This signals the presence of

an infinite sequence of modes near the cluster point at r = rc.

By investigatingD for (4) in plasmas with a reversed magnetic

shear (q ′ < 0), we obtain criteria for the existence of RSAEs

near the point of shear reversal (q ′ = 0).

We note that (16) can only be satisfiedwhenA1 = A′
1 = 0

and only the behaviour of A1 to second order in x is of

importance. In this case (16) becomes

D =
2A′

2

rA′′
1

∣

∣

∣

∣

r=rc

>
1

4
. (17)

Because of the magnetic field line bending term inA1, A
′′
1 will

typically be positive. In this case (17) shows that the clustering

of modes requires A′
2 > 0. When A′

2 < 0 potentially unstable

modes cannot cluster below the ω− continuum, ensuring local
stability [21].

When, however, at r = r0 the safety factor has aminimum

q0 < m/n, magnetic field line bending decreases away from

r = r0 so that A
′′
1 is negative (see figure 1). This allows, in

locally stable plasmas withA′
2 < 0, the appearance of RSAEs.

Note that with A1 = A′
1 = 0 and A′′

1 < 0, (12) implies

that ω2D
′′

> ω2+
′′
. This will allow the sequence of RSAEs

with frequencies ω2D > ω2+ to avoid strong overlap with the

continuum and associated continuumdamping, see figure 1(a).

When q0 decreases in time, field line bending will increase, as

will the mode frequency according to (14). This explains why

for decreasing q0 typically upsweeping RSAEs are found.

3.4. Reversed magnetic shear

We consider a plasma with a minimum q0 in the safety factor,

close (m/q0−n ∼ ǫ) to a rational surface q = m/n. To second

order in r − r0 we can write q = q0 +
1
2
q ′′
0 (r − r0)

2 so that

(

m

q
− n

)2

=
(

m

q0
− n

)2

−
(r − r0)

2

1r2
, (18)

where we introduced a squared shear length scale

1r2 ≡
q20

mq ′′
0

1

m/q0 − n
. (19)

The parallel wave number −(m/q0 − n)/R0 is positive when

q0 > m/n, so that (m/q − n)2 increases quadratically away

from r = r0. When, however, q0 < m/n, field line

bending decreases away from r = r0 up to the rational surface

q = m/n, after which it increases again. This causes the

‘double well’ of figure 1(b), the description of which requires

the inclusion of terms of higher order in r − r0.

3
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Note that in this case the continuum frequencies ω2± have
a similar double well shape, see figure 1(a). Sufficiently

localized modes may therefore avoid strong continuum

damping.

The cluster point is characterized by the two conditions

A1 = 0 and A′
1 = 0. These are satisfied when either ωD = ω+

and ω′
D = nÄ′ = ω′

+ as in figure 1(a) or ωD = −ω+ and

ω′
D = nÄ′ = −ω′

+. When these criteria cannot be satisfied,

RSAEs cannot exist. The expression for A′′
1 at r = rc,

A′′
1 = (Ã1 + (m/q − n)2)′′ = 2

N − 1
1r2

, (20)

is naturally split into a term from (18) due to field line bending,

and other effects due to Ã′′
1 incorporated in N :

N ≡
1r2

2

ω̃2+ − ω̃2−
ω2A(ω20 − ω̃2+)

(ω2D − ω̃2+)
′′, (21a)

≈ 1r2
ã
3/2
1

1− ã1

ω0

ωA

nÄ′′ − ω̃′′
+

ωA
, (21b)

where in the second line we assumed ã2 ≪ ã21 and used (8).

Note that in writing (20) we assumed that rc is sufficiently

close to r0 that higher order terms in (18) can be neglected, for

example |rc − r0| ≪ q ′′
0 /q

′′′
0 .

3.5. Existence criterion for RSAEs

Using (20), the cluster condition (17) is given by

D =
A′
2

N − 1
1r2

r
>
1

4
. (22)

As discussed previously, RSAEs can avoid strong continuum

damping when A′′
1 < 0. In this case the existence

condition (22) is given by

(1− N)
r

41r2
< −A′

2. (23)

Therefore−A′
2 should be sufficiently large and positive for the

existence of RSAEs near their minimum frequency. With (6b)

and (19) we can write this as

(1− N)

(

m

q0
− n

)

r

4

m

n2

q ′′
0

q20
< β ′(1− q2) + q2α′

k + q2β ′
k.

(24)

Equation (24) agreeswith the previous result of [19, 20, 27] that

in a static plasma, where αk = βk = 0, a radially decreasing

pressure is favourable for the existence of RSAEs provided

that q > 1. When, however, in a toroidally rotating plasma

M
2(1 +M

2) > 1− 1/q2, (25)

the first and last terms on the right-hand side of (24) combined

become negative. When this holds, a decreasing plasma

pressure is unfavourable for RSAE existence.

Figure 1. Schematic of the typical circumstances under which
RSAEs cluster at a position r = rc and frequency (a) ω

2
D = ω2+

where (ω2D)
′ = (ω2+)

′ so that (b) A1 = A′
1 = 0. This clusterpoint is

not necessarily at the position (c) r = r0 where the safety factor q
has its minimum q0.

3.6. Physical interpretation

The first term on the right-hand side of (24) represents the

well-known ‘magnetic well’. It is the sum of the destabilizing

pressure gradient and the stabilizing average toroidal field

curvature.

For a large aspect ratio tokamak, using (1), R ·
∇ 1
2
ρR2Ä2 ≈ ρsR

2
0Ä

2(1 + M
2) = βkB

2
0 . Therefore βk is

associated with the variation of the kinetic energy density

with major radius. When β ′
k < 0, the kinetic energy density

decreases radially, which gives rise to instability analogous to

the Rayleigh–Taylor instability of a fluid on top of a lighter

fluid [21].

The term αk is proportional to ρÄωD and its origin can be

traced back to the Coriolis effect. For ω20 < ω2D and radially

decreasing profiles, α′
k is negative and thus unfavourable for

the existence of modes with ωD/n > 0. From (2), the toroidal

phase velocity −ωR/n is in this case smaller than the plasma

velocity RÄ. Observed from a frame locally moving along

with the flow, these modes will move in the direction opposite

to the plasma rotation. The effect is in this case favourable

for modes with ωD/n < 0. Note that this term will be less

significant for higher toroidal mode numbers n.

4
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4. Experimental implications

After shortly considering some effects lying outside the ideal

MHD description used here, we will discuss the experimental

implications of the present analysis.

4.1. Adiabatic constant

Since we apply MHD to a plasma that is not strongly

collisional, we must allow for a value of the adiabatic constant

γ that deviates from the ideal gas value γ = 5/3. For the

description of RSAEs in a low-β tokamak plasma this is likely

to be an overestimate and a value of γ ≈ 1.4 seems more

appropriate [33]. Since
√

γ T is the sound speed cs in an ideal

gas, we may write ω0 = cs/qR0 and replace cs with a more

general expression:

c2s =
∑

j γjnjTj
∑

j nj

, (26)

which is a sum over species j including both electrons

(e) and ions (i) with number densities nj . For a mono-

component plasma with γe = 1 and γi = 7/4 we obtain

ω20 = (Te + 7Ti/4)/q
2R20 as in [15]. Note that the definition

of temperature used here includes a factor kB/mj with kB
Boltzmann’s constant and mj the component’s particle mass.

4.2. Energetic ions

Without rotation, D of (22) equalsQp(ressure) of [20, 27] when

evaluated near the rational surface at low frequency. We may

follow the approach of [18, 15, 20] and add independently

derived toroidal and hot particle terms, Qtor and Qhot,

respectively, to obtain an extended criterion for mode

existence. Near a rational surfaceQtor is negligible compared

withQp [20] and the expression ofQhot from [18] writes

Qhot

D
= (1− N)

ωωh

ω2A

〈ρh〉′/ρ
A′
2/m

. (27)

In a tokamak ωA typically exceeds both the RSAE frequency

ω and the hot ion gyrofrequency ωh by several orders of

magnitude. Therefore, the flux surface averaged hot particle

density 〈ρh〉 has to be peaked andmust be a significant fraction
of the plasma density ρ to compete with the plasma pressure

and rotation effects of A′
2/m ∼ ǫ2.

4.3. Frequency

The primary effect of toroidal rotation on the RSAE frequency

that is often observed is the Doppler shift nÄ. It can be

used to determine the mode numbers and the angular rotation

frequency Ä. For high n it can even dominate the RSAE

frequency [30].

In current tokamaks the Mach number can be a significant

fraction of one. In JET for example, NBI heated plasmas can

have M ≈ 0.5, see for example [34]. This approximately

doubles ã1, causing an increase of about 40% in the minimum

RSAE frequency ω̃+ ≈
√

ã1ω0. Such a change should be

observable.

Near the minimum RSAE frequency, when magnetic field

line bending is still small, changes in temperature and the

safety factor enter the frequency evolution according to (15).

When, however, magnetic field line bending is the primary

source of the RSAE frequency change, (14) shows that dω2+/dt

approximately scales with ω2A.

4.4. Existence

Recently, RSAEs have been observed between sawtooth

crashes when the magnetic shear was very low and q0 ≈ 1 [3].

Near q = 1, the averagemagnetic well term−β ′(1−q2) in the

existence criterion (24) is small. Shaping effects like ellipticity

and triangularity are known to ‘deepen’ the magnetic well,

making it vanishes at a somewhat lower q. In this case the

rotational terms α′
k and β ′

k can be critical for RSAE existence

in shots with significant toroidal rotation.

For RSAEs near a rational surfaceωD ≈ ±ω̃+ ≈ ±
√

ã1ω0
so that

αk ≈ ±
√

8γ

√
ã1

ã1 − 1
βM

m

(

1 +
M

2

γ

)

. (28)

With γ = 1.4, q = 1, andM = 0.5 this givesαk ≈ ±1.7β/m.

Typically both β and M are decreasing functions of minor

radius, so that α′
k > 0 for RSAEs with ωD/m < 0. According

to (24) a radially increasing αk is favourable for mode

existence. Therefore, modes with a toroidal phase velocity

exceeding the plasma rotation velocity so that ωD/m < 0,

are favoured. Modes with a toroidal phase velocity below the

plasma rotation velocity receive a strong negative contribution

to the right-hand side of the existence criterion (24). Theymay

therefore not exist. From (28) this Coriolis effect is strongest

for low m.

For M = 0.5, the centrifugal term βk ≈ 0.3β is a bit

smaller, but does not decrease with m. From (27), it becomes

more significant compared with fast particle effects for higher

m. Typicallyβ ′
k < 0 so that from (24) it is always unfavourable

for the existence of RSAEs. It should therefore be possible

to see RSAEs in the GAM frequency range disappear with

increasing rotation. First the modes moving slower than the

plasma, lowest-m modes first.

4.5. Downwards sweeping cascades

In the vast majority of cases, RSAEs are observed to

increase in frequency with time. Occasionally, however,

downward sweeping cascades are observed. In experiments

with significant toroidal rotation, upwards sweeping RSAEs

propagating in the direction opposite to the plasma rotation

appeared to sweep downwards in frequency due to the

Doppler shift nÄ [30]. In other cases the observation of

downwards chirping cascades required the introduction of

energetic particles, kinetic effects, and ‘quasi-modes’ to be

explained [6, 35, 36]. Here we show that also within the

present MHD framework there are circumstances under which

downwards sweeping cascades can arise.

The typical situation for which upsweeping cascades

occur is shown in figure 1. When q0 < m/n decreases,

field line bending increases and the mode frequency shifts

5
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upwards. When, however, q0 is above m/n, field line

bending decreases when q0 decreases, resulting in downwards

sweeping cascades. The increasing field line bending away

from r = r0 will, however, generally lead to a local minimum

in the continuum, instead of a maximum as in figure 1(a).

The anti-Sturmian sequence of modes clustering above this

continuum will unavoidably overlap in frequency with the

continuum. This will lead to heavy continuum damping,

providing an explanation for why these downwards sweeping

cascades are rarely observed. Note that a Sturmian sequence

ofmodes below the continuumwithω2D < ω2+ (BAEs in regular

shear plasmas) may still avoid continuum damping and sweep

downwards.

RSAEs with frequencies ω2D > ω2+ can thus avoid strong

continuum damping when A′′
1 < 0. Depending on N , there

are several possibilities for this to happen, summarized by the

following diagram:

where the conclusions regarding upsweeping or downsweep-

ing frequency assume decreasing q0(t). The first case with

N < 1 and a minimum in the safety factor profile, resulting in

upwards shifting frequencies, is the typical case for RSAEs.

The second case shows that strong continuum damping may

also be avoided (A′′
1 < 0) when there is a local maximum q0

in the safety factor profile (q ′′
0 < 0) that exceeds m/n. These

are precisely the conditions under which simulations showed

down-chirping RSAEs [37]. Also in LHD experiments with

q ′′
0 < 0, RSAEs with decreasing frequency were found [12].

The above diagram also shows another instance in which

downsweeping may occur, namely when N > 1. According

to (21b) this can happen, for example when n is high and the

rotation frequency is locally concave (Ä′′ > 0). In this case

the Doppler shift ensures that, at least locally, ωD curves away

from the continuum so that strong continuum damping can be

avoided.

4.6. Other modes

Equation (22) is also a necessary condition for the existence

of modes clustering above the ω− continuum. This would

predict, at low frequencies very close to the Doppler shift,

the possibility of a second cascade of RSAEs. For these

low frequencies α′
k is somewhat smaller and favours positive

instead of negative Doppler-shifted frequency modes. Note

that in this case, N is obtained by interchanging ω+ and ω−
in (21a).

For positive shear plasmas, (18) is replaced by (m/q −
n)2 = (nq ′/q)2(r − r0)

2. By replacing 1r2 with −(q/nq ′)2,

therefore, (22) becomes a criterion for the existence of modes

clustering below the ω± continua of regular shear plasmas:

r

4

(

q ′

q

)2

<
−β ′(1− q2) − q2α′

k − q2β ′
k

1− N
. (29)

This criterion improves on the derived integral condition for

the flow driven ‘BAEs’ found in [17] by taking into account the

effect of magnetic shear. When γ = 1, the clusterfrequency

ω̃− = 0 is marginally stable. Modes clustering below this

continuum are therefore automatically unstable. In this case,

the reverse of (29) provides a stability criterion for localized

(Mercier) modes [21].

5. Discussion and conclusions

We derived an existence condition, (24), for reversed shear

Alfvén eigenmodes near a rational surface using a clusterpoint

analysis. Toroidal plasma rotation enters through a centrifugal

effect and an effect depending on the Doppler-shifted mode

frequency. The latter Coriolis effect is typically unfavourable

for RSAEs with a toroidal phase velocity that is below the

plasma velocity or in the opposite direction. Neglecting this

term, we showed that RSAEs form an anti-Sturmian sequence

with their number of nodes decreasing with increasing

frequency. We finally showed that the sometimes observed

RSAEs sweeping downwards in frequency can avoid strong

continuum damping when the safety factor contains a local

maximum, or the flow profile is strongly concave.

We note that local existence criteria of the kind discussed

here, neglect coupling between poloidal harmonics allowing

the (weak) ballooning of a mode towards the low-field side

of the plasma. This destabilizing ballooning effect is even

stronger in the presence of rotation, as the kinetic energy adds

to the static pressure in the coupling terms. When themagnetic

shear is low enough for the sideband harmonics to be located

away from their respective resonance, the effect of the coupling

term h of (4) will, however, be stabilizing [17]. The influence

of this coupling on the derived existence criterion (22) for

RSAEs is therefore somewhat non-trivial.

In addition to the influence on the existence of RSAEs,

toroidal rotation also increases their clusterpoint frequency

given by (10). Thereby, a changing toroidal rotation weakly

enters the time variation of the RSAE frequency as described

by (14) and (15). Effects associated with the compression

of Alfvén waves are also included here. Taking all of these

effects into account leads to improved predictions and a better

understanding of the low-frequency MHD spectrum.
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